Sep 2009

Ultradur® B 2550 PBT (Polybutylene Terephthalate)

Product Description

Ultradur B 2550 is an unfilled, easy flow PBT offering good heat resistance. It conforms to FDA requirements of 21 CFR 177.1660.

Applications

Applications include monofilament, bristles and heat-resistant coatings on paper and board used for packaging frozen foods and oven-ready meals. Also for injection molding applications that call for high flowability.

PHYSICAL	ISO Test Method	Property Value
Density, g/cm ³	1183	1.3
Viscosity Number, cm ³ /g	1628	107
Mold Shrinkage, parallel, %	294-4	1.6
Mold Shrinkage, normal, %	294-4	1.91
Moisture, %	62	
(50% RH)		0.25
(Saturation)		0.5
RHEOLOGICAL	ISO Test Method	Property Value
Melt Volume Rate (250 °C/2.16 Kg), cc/10min.	1133	40
MECHANICAL	ISO Test Method	Property Value
Tensile Modulus, MPa	527	
23°C		2,500
Tensile stress at yield, MPa	527	
-40°C		94
23°C		60
Tensile strain at yield, %	527	
23°C		3.7
Nominal strain at break, %	527	
23°C		35
Flexural Modulus, MPa	178	
23°C		2,200
Tensile Creep Modulus (1000h), MPa	899	1,100
Tensile Creep Modulus (1h), MPa	899	1,500
IMPACT	ISO Test Method	Property Value
Izod Notched Impact, kJ/m ²	180	
23°C		4
Charpy Notched, kJ/m ²	179	
23°C		6
-30°C		4
Charpy Unnotched, kJ/m ²	179	
23°C		250
THERMAL	ISO Test Method	Property Value

Ultradur® B 2550

HDT A, °C7565Coef. of Linear Thermal Expansion, Parallel, mm/me °C1.45 X10-4ELECTRICALISO Test MethodProperty ValueComparative Tracking IndexIEC 60112500Volume ResistivityIEC 60093>1E13Surface ResistivityIEC 600931E13Dielectric Constant (100 Hz)IEC 602503.3Dielectric Constant (1 MHz)IEC 602503.3Dissipation Factor (100 Hz)IEC 6025013Dissipation Factor (1 MHz)IEC 60250200	incluig i chili, c	0110	==0
mm/mm °CELECTRICALISO Test MethodProperty ValueComparative Tracking IndexIEC 60112500Volume ResistivityIEC 60093>1E13Surface ResistivityIEC 600931E13Dielectric Constant (100 Hz)IEC 602503.3Dielectric Constant (1 MHz)IEC 602503.3Dissipation Factor (100 Hz)IEC 6025013	HDT A, ° C	75	65
Comparative Tracking Index IEC 60112 500 Volume Resistivity IEC 60093 >1E13 Surface Resistivity IEC 60093 1E13 Dielectric Constant (100 Hz) IEC 60250 3.3 Dielectric Constant (1 MHz) IEC 60250 3.3 Dissipation Factor (100 Hz) IEC 60250 13			1.45 X10-4
Volume Resistivity IEC 60093 >1E13 Surface Resistivity IEC 60093 1E13 Dielectric Constant (100 Hz) IEC 60250 3.3 Dielectric Constant (1 MHz) IEC 60250 3.3 Dissipation Factor (100 Hz) IEC 60250 13	ELECTRICAL	ISO Test Method	Property Value
Surface Resistivity IEC 60093 1E13 Dielectric Constant (100 Hz) IEC 60250 3.3 Dielectric Constant (1 MHz) IEC 60250 3.3 Dissipation Factor (100 Hz) IEC 60250 13	Comparative Tracking Index	IEC 60112	500
Dielectric Constant (100 Hz) IEC 60250 3.3 Dielectric Constant (1 MHz) IEC 60250 3.3 Dissipation Factor (100 Hz) IEC 60250 13	Volume Resistivity	IEC 60093	>1E13
Dielectric Constant (1 MHz) IEC 60250 3.3 Dissipation Factor (100 Hz) IEC 60250 13	Surface Resistivity	IEC 60093	1E13
Dissipation Factor (100 Hz) IEC 60250 13	Dielectric Constant (100 Hz)	IEC 60250	3.3
	Dielectric Constant (1 MHz)	IEC 60250	3.3
Dissipation Factor (1 MHz) IEC 60250 200	Dissipation Factor (100 Hz)	IEC 60250	13
	Dissipation Factor (1 MHz)	IEC 60250	200

3146

Processing Guidelines

Melting Point, °C

Material Handling

Max. Water content: 0.04%

To ensure optimum part performance, this product must be dried prior to molding and maintained at a moisture level of less than 0.04%. Dehumidifying or desiccant dryers operating at 100-120 °C at 4 hours drying time is recommended. Further information concerning safe handling procedures can be obtained from the Material Safety Data Sheet. Alternatively, please contact your BASF representative.

Typical Profile

Melt Temperature 260-270 °C (500-518 °F)

Typical Temperature Profile: Zone 1: 260-265 °C (500-509 °F) Zone 2: 265-275 °C (509-527 °F) Zone 3: 260-270 °C (500-518 °F) Zone 4: 255-265 °C (491-509 °F) Head: 260-270 °C (500-518 °F) Pump: 260-270 °C (500-518 °F) Die Zones: 260-270 °C (500-518 °F)

Recommended Screw: Three section screw: 6D/7D/9D + 3D Compression Ratio: 3.5:1 to 4:1 L/D Ratio: 25:1 minimum

Water Bath Temperature: 45-60 °C (113-140 °F)

Note

Although all statements and information in this publication are believed to be accurate and reliable, they are presented gratis and for guidance only, and risks and liability for results obtained by use of the products or application of the suggestions described are assumed by the user. NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH. Statements or suggestions concerning possible use of the products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that toxicity data and safety measures are indicated or that other measures may not be required.